The CUNY Advanced Science Research Center

brings the nation’s leading urban public university to a landmark moment in its multibillion-dollar commitment to innovative science.

Download Brochure

The Advanced Science Research Center focuses CUNY research in five strategic areas that stand at the vanguard of 21st Century global science. They are specialized but inter-related disciplines that build on the strengths the University has developed over the past decade, are compelling in their promise, and important to the nation’s future.

Rein Ulijn
Director, ASRC Nanoscience Initiative
Einstein Professor of Chemistry
Hunter College

A CUNY focus for several years, nanoscience is the study and control of matter on atomic and molecular scales of 1 to 100 billionths of a meter. Nanoscience and nanotechnology are major sources of important scientific developments, creating extraordinary new materials and devices with a broad range of applications in fields from biomedicine to energy production.

The ASRC Nanoscience Initiative is led by Dr. Rein Ulijn, a pioneer in an area of nanoscience that focuses on creating materials and systems that have unique adaptive properties inspired by biology but are much simpler than those found in nature. The Initiative will be distinctive in its focus on this “systems” approach to nanoscience. The aim is to mimic the complex collections of interacting components, organized into functional wholes, that are typically found in ecological and biological contexts.

These systems—characterized by the ability to adapt and respond to new situations—are at the heart of many scientific challenges of critical societal impact. It is the Nanoscience Initiative’s vision to create materials with adaptive properties similar to those found in living systems and are difficult to achieve using traditional approaches. By developing new molecular technologies that are accessible to experimental scientists, the ASRC nanoscience team will be poised to exploit its discoveries in technological and biomedical applications.

The development of adaptive molecular technologies provides a paradigm shift in the way we can measure, influence and ultimately direct complex molecular ecosystems such as those found in biology. This will provide tremendous opportunities for the development of new disruptive technologies—advances in the treatment of disease, development of new adaptive personal health care products and smarter manufacturing processes. This new direction for chemical nanoscience will enable systems that adapt and respond to unpredictable situations in ways that yield robust, real-world applications.

Photo of Andrea Alu

Andrea Alù
Director, ASRC Photonics Initiative
Einstein Professor of Physics
The Graduate Center, CUNY

The technology of generating and using light and other radiant energy forms, photonics is best known for fiber-optic communications, but its potential in a wide range of fields of applied science is vast: From diagnosing cancer without a biopsy to detecting bioterrorism. Researchers also use photonics to explore areas such as plant photosynthesis to advance basic scientific knowledge.

Photonics was chosen as an ASRC flagship initiative because it has become a strength for CUNY—an area that has been expanded over the last several years through the University’s “cluster hiring” initiative in the sciences—and because it offers unusual potential for collaboration across disciplines. Photonics research encompasses biology, medicine, physics and technology fields such as computer display and lighting, as well as the futuristic fields of quantum information processing and quantum encryption, in which data reside on single photons, which are to light what electrons are to electricity.

Andrea Alù, renowned engineer and photonics researcher, is the founding director of the Photonics Initiative and comes to the ASRC from the University of Texas at Austin where he was the Temple Foundation Endowed Professor #3 in the Cockrell School of Engineering.

Alù is best known for his breakthroughs in invisibility cloaking, or making objects transparent to incoming microwave signals. He realized the first freestanding three-dimensional invisibility cloak. He also developed the first nonreciprocal acoustic circulator — or one-way sound device.

His discoveries in metamaterials and plasmonics have broad implications for a range of sectors, including defense, communications, medical imaging, acoustics, mechanics, and robotics.

Kevin Gardner
Director, ASRC Structural Biology Initiative
Einstein Professor of Chemistry
The City College of New York

Structural biology is positioned at the crossroads of three scientific disciplines, tackling questions inspired by biology, drawing on perspectives of chemistry and using tools provided by physics to take on a wide range of biomedical research.

Structural biologists use their multifaceted approach to examine, in unique ways, the shapes, dynamics and function of proteins and other biological molecules. The knowledge they glean puts them in an ideal position to attack many biomedical research problems, particularly how disease can prevent parts of the cellular machinery from carrying out their proper functions. This work provides a strong foundation for the development of novel therapeutic and diagnostic tools useful for scientific areas as diverse as cancer biology and biochemistry.Structural biology has played a key role in CUNY’s decade-long resurgence as a research university: There are some 30 teams on seven campuses addressing fundamental questions at the frontier of applied life sciences research. With the appointment of Dr. Kevin Gardner as founding director of its structural biology initiative, the ASRC is poised to both expand and focus CUNY’s role as a major center of research and discovery in this field.The ASRC Structural Biology Initiative will assemble teams of experts who embrace collaboration—with each other as well as with labs throughout CUNY and beyond. This culture of partnership is a conceptual cornerstone of the entire ASRC, but is especially relevant to the need for structural biology researchers to collectively explore problems that are beyond any single lab’s scope. Examining critical processes that happen quickly and at minute distance scales requires the complementary expertise and techniques of biology, chemistry, physics and engineering. The ASRC will bring these disciplines together and provide researchers with the most advanced core facilities to elevate and expand their work.These principles are exemplified by the work done in Dr. Gardner’s laboratory. His research focuses on the proteins used by cells to perceive and react to changes in the environments around them. Studying a diverse group of such protein sensors—from oxygen sensors of cancer cells to light sensors in plants & bacteria—has revealed that they share a common signaling mechanism. This suggests ways in which they are naturally regulated, and how they might be artificially controlled—steps leading to the development of new anti-cancer therapies and research tools.Dr. Gardner’s lab is working with expert biochemists, chemists, cell biologists and engineers to test new applications for these exciting discoveries that owe their start to structural biology but impact well beyond its scope.

CUNY ASRC Neuroscience Initiative Director Patrizia Casaccia, PhD MD.

Patrizia Casaccia
Director, ASRC Neuroscience Initiative
Einstein Professor of Biology
Hunter College

The Neuroscience Initiative is a new research center focused on glial biology at the CUNY Advanced Science Research Center, with the goal of promoting innovative science addressing complex scientific challenges by working together with groups across CUNY and other institutions in New York City.

Led by founding initiative director Patrizia Casaccia, the focus of the Neuroscience Initiative will be cross-fertilization with the other initiatives hosted at the CUNY ASRC to: implement novel integrated approaches for the study of environmental influences on gene expression, brain health and behavior, develop new technologies for measuring normal brain function, and design advanced platforms aimed at prevention and better health.

The mission of the CUNY ASRC’s Neuroscience Initiative is to develop cutting-edge technology for the study of the effect of environmental variables on human behavior, brain health, and disease, while investigating new tools to study the pathogenesis and new molecules to treat glial tumors and neurodegenerative disorders. The ultimate goal is to provide a better understanding of glial cell dysfunction in psychiatric and neurological disorders and lead to innovative therapeutic approaches.


Charles J. Vörösmarty
Director, ASRC Environmental Sciences Initiative
Einstein Professor of Civil Engineering
The City College of New York

The Environmental Sciences Initiative is already widely known as a pioneering center of interdisciplinary environmental research. The initiative is led by Charles J. Vörösmarty, an internationally recognized expert in global water issues who is the ASRC’s first director. He established the initiative after joining CUNY from the University of New Hampshire’s Institute for the Study of Earth, Oceans and Space, where he was the founding director of its Water Systems Analysis Group.

Under Dr. Vörösmarty’s leadership, the Environmental Sciences Initiative is dedicated to the analysis of strategic local, regional, and global environmental challenges. It provides a meeting ground where interdisciplinary scientists, engineers and technologists join with policy experts to analyze environmental crises and craft innovative solutions to emerging environmental problems. As climate change and environmental problems gain a new sense of urgency around the globe, the initiative promotes collaborations between experts from various disciplines. That’s the key, says Dr. Vörösmarty, to managing an array of diverse challenges: coping with climate extremes, feeding a population that continues to grow, establishing energy security while preserving biodiversity and ecosystems, protecting human health while sustaining economic development. The initiative introduces state-of-the-art scientific knowledge and environmental sensing technologies into ongoing discussion with policy makers.”In our view, technology becomes not only a tool but also a transformative force for environmental stewardship,” Dr. Vörösmarty says.